753 research outputs found

    Risk-return Efficiency, Financial Distress Risk, and Bank Financial Strength Ratings

    Get PDF
    This paper investigates whether there is any consistency between banks' financial strength ratings (bank rating) and their risk-return profiles. It is expected that banks with high ratings tend to earn high expected returns for the risks they assume and thereby have a low probability of experiencing financial distress. Bank ratings, a measure of a bank's intrinsic safety and soundness, should therefore be able to capture the bank's ability to manage financial distress while achieving risk-return efficiency. We first estimate the expected returns, risks, and financial distress risk proxy (the inverse z-score), then apply the stochastic frontier analysis (SFA) to obtain the risk-return efficiency score for each bank, and finally conduct ordered logit regressions of bank ratings on estimated risks, risk-return efficiency, and the inverse z-score by controlling for other variables related to each bank's operating environment. We find that banks with a higher efficiency score on average tend to obtain favorable ratings. It appears that rating agencies generally encourage banks to trade expected returns for reduced risks, suggesting that these ratings are generally consistent with banks' risk-return profiles.bank ratings; risk-return efficiency; stochastic frontier analysis

    Radial symmetric solutions of the Cahn-Hilliard equation with degenerate mobility

    Get PDF
    In this paper we study the radial symmetric solutions of the two-dimensional Cahn-Hilliard equation with degenerate mobility. We adopt the method of parabolic regularization. After establishing some necessary uniform estimates on the approximate solutions, we prove the existence and the nonnegativity of weak solutions

    Modelling arterial pressure waveforms using Gaussian functions and two-stage particle swarm optimizer

    Get PDF
    Changes of arterial pressure waveform characteristics have been accepted as risk indicators of cardiovascular diseases. Waveform modelling using Gaussian functions has been used to decompose arterial pressure pulses into different numbers of subwaves and hence quantify waveform characteristics. However, the fitting accuracy and computation efficiency of current modelling approaches need to be improved. This study aimed to develop a novel two-stage particle swarm optimizer (TSPSO) to determine optimal parameters of Gaussian functions. The evaluation was performed on carotid and radial artery pressure waveforms (CAPW and RAPW) which were simultaneously recorded from twenty normal volunteers. The fitting accuracy and calculation efficiency of our TSPSO were compared with three published optimization methods: the Nelder-Mead, the modified PSO (MPSO), and the dynamic multiswarm particle swarm optimizer (DMS-PSO). The results showed that TSPSO achieved the best fitting accuracy with a mean absolute error (MAE) of 1.1% for CAPW and 1.0% for RAPW, in comparison with 4.2% and 4.1% for Nelder-Mead, 2.0% and 1.9% for MPSO, and 1.2% and 1.1% for DMS-PSO. In addition, to achieve target MAE of 2.0%, the computation time of TSPSO was only 1.5 s, which was only 20% and 30% of that for MPSO and DMS-PSO, respectively

    Some properties of solutions for a class of metaparabolic equations

    Get PDF
    In this paper, we study the initial boundary value problem for a class of metaparabolic equations. We establish the existence of solutions by the energy techniques. Some results on the regularity, blow-up and existence of global attractor are obtained

    Existence of Solutions for the Evolution -Laplacian Equation Not in Divergence Form

    Get PDF
    The existence of weak solutions is studied to the initial Dirichlet problem of the equation =div(|∇|()−2∇), with inf ()>2. We adopt the method of parabolic regularization. After establishing some necessary uniform estimates on the approximate solutions, we prove the existence of weak solutions

    Qualitative properties for a sixth–order thin film equation

    Get PDF
    In this article, the author studies the qualitative properties of weak solutions for a sixth‐order thin film equation, which arises in the industrial application of the isolation oxidation of silicon. Based on the Schauder type estimates, we establish the global existence of classical solutions for regularized problems. After establishing some necessary uniform estimates on the approximate solutions, we prove the existence of weak solutions. The nonnegativity and the expansion of the support of solutions are also discussed. First published online: 10 Feb 201
    corecore